Bê tông của một nhà máy điện hạt nhân bị bỏ hoang ở Nhật Bản trở nên cứng hơn gấp 3 lần, và một chất hiếm được tìm thấy sau khi cắt
Các nhà nghiên cứu tại Đại học Nagoya, Nhật Bản đã phát hiện ra một hiện tượng đáng ngạc nhiên trong một nhà máy điện hạt nhân bị bỏ hoang, độ bền của kết cấu bê tông không những không giảm mà còn cứng hơn so với ban đầu, gấp ba lần so với ban đầu.
- Có thể bạn chưa biết: Loài voi cũng có thể sử dụng ngôn ngữ ký hiệu và "bất tử" trước ung thư
- Tìm hiểu về búp bê Daruma của Nhật Bản - một loại bùa may mắn với truyền thống phong phú
- Hóa ra tàu lượn, chữ nổi, xe đạp hay băng vệ sinh đều được phát minh ra nhờ vào những lý do vô cùng "đặc biệt"
- Tổng hợp những môn thể thao kỳ lạ trong Thế vận hội Olympic, nhưng tới nay đã bị xóa bỏ
- Trong tương lai, con người đều có thể trở thành những "cyborg" hay không?
- What If...? tập 6 và những câu hỏi cần được giải đáp về Killmonger và Iron Man
Trái Đất là một hành tinh cực kỳ "năng động", và bề mặt của nó có thể thay đổi bất cứ lúc nào do tác động của kiến tạo mảng, xói mòn nước và phong hóa, và định hình sinh học.
Nếu một ngày nào đó con người biến mất, những công trình huy hoàng mà chúng ta để lại có thể sụp đổ hoàn toàn trong vòng hàng trăm năm sau đó, đặc biệt là những công trình bê tông cốt thép hiện đại được xây dựng bằng một lượng lớn xi măng, thậm chí một số có thể đến 100 năm cũng không tồn tại được.
Điều này là do các thanh thép có thể bị ăn mòn, và bê tông cũng sẽ bị ăn mòn theo nhiều cách khác nhau, và độ cứng sẽ giảm dần theo thời gian, và cuối cùng kết cấu sẽ sụp đổ.
Tuy nhiên, các nhà nghiên cứu tại Đại học Nagoya, Nhật Bản đã phát hiện ra một hiện tượng đáng ngạc nhiên trong một nhà máy điện hạt nhân bị bỏ hoang, độ bền của kết cấu bê tông không những không giảm mà còn cứng hơn so với ban đầu- độ cứng tăng gấp ba lần và cường độ nén cũng tăng gấp đôi, vậy chuyện gì đang xảy ra?
Nhà máy điện hạt nhân này là nhà máy điện hạt nhân Hamaoka ở Nhật Bản, được xây dựng vào năm 1976 và hoạt động cho đến năm 2009, sau đó nó ngừng hoạt động và bị bỏ hoang. Sau khi bị bỏ hoang trong nhiều năm, các nhà khoa học đã mở cửa nhà máy điện hạt nhân vào năm ngoái và kiểm tra các bức tường bê tông dày của nhà máy điện hạt nhân.
Hầu hết các loại bê tông hiện đại là hỗn hợp của xi măng Portland - đá vôi, đá sa thạch, tro, phấn, sắt và đất sét, cùng một số thành phần khác - được nung nóng để tạo thành một vật liệu thủy tinh trộn với đất "hỗn hợp". Chẳng hạn như cát hoặc đá nghiền mà không chứa các phản ứng hóa học. Nếu phản ứng xảy ra trong các cốt liệu này, chúng có thể gây ra sự đứt gãy không mong muốn trong bê tông.
Nghiên cứu sâu hơn cho thấy có một chất hiếm - Al-tobermorite, một loại aluminosilicat, xuất hiện trong những bức tường bê tông này ở nhiệt độ trung bình đến cao.
Trước đó, các nhà khoa học đã phát hiện ra chất này tại các công trình trong thời kỳ La Mã vào thế kỷ thứ nhất sau Công Nguyên, Ý và các nước Châu Âu khác đã sử dụng xi măng để xây dựng các công trình như cảng. Những bờ kè này vẫn vững chắc ở cảng sau khi bị sóng đánh trôi 2000 năm, không những không bị hư hại mà còn trở nên vững chắc hơn.
Các nhà nghiên cứu nhận thấy các hỗn hợp xi măng hiện đại có xu hướng bị xói mòn, đặc biệt khi có nước biển, nhưng công thức từ thời La Mã cổ gồm tro núi lửa, vôi, nước biển và khoáng chất được gọi là nhôm tobermorite thực sự có tính năng tăng cường độ vững bền của bê tông và ngăn ngừa các vết nứt lan rộng. Công thức này hình thành do nước biển liên tục đập vào các bờ tường trong hàng trăm năm, cho phép hỗn hợp khoáng chất của oxit silic và vôi phát triển giữa các lớp đá vôi và vữa, hình thành khả năng chống chọi với lực của nước.
Hóa ra xi măng La Mã cổ đại được làm từ tro núi lửa, vôi, nước biển và đá núi lửa khổng lồ. Nó có chứa nhôm kim loại, giúp tăng cường đáng kể độ cứng và độ đàn hồi của công trình. Sau khi ngâm trong nước biển một thời gian dài, đá núi lửa và thủy tinh trong bê tông sẽ từ từ tan ra, và phản ứng với một số khoáng chất như silicat, phillipsite, và tạo thành aluminosilicat, sau đó các vết nứt đã xuất hiện theo thời gian trên các con đập được lấp lại, và cấu trúc ngày càng trở nên mạnh mẽ hơn.
Do đó, chìa khóa để tăng cường độ của bê tông trong nước biển nằm ở Al-tobermorite. Tuy nhiên, các nhà khoa học Nhật Bản phát hiện ra rằng rất khó trộn trực tiếp Al-tobermorite vào bê tông hiện đại, vì cần nhiệt độ trong phòng thí nghiệm lên tới hơn 70 độ C để tạo ra chất này, tuy nhiên nhiệt độ quá cao sẽ làm cường độ của bê tông giảm, do đó nhiệt độ của bê tông cần được giới hạn ở mức 65 độ hoặc thấp hơn.
Tobermorite là khoáng chất hydrat canxi silicat.
Điều này đã tạo ra một sự mâu thuẫn, nhưng làm thế nào những bức tường bê tông của La Mã cổ đại và những bức tường bê tông của các nhà máy điện hạt nhân Nhật Bản lại sở hữu được chất này?
Sau khi các nhà khoa học Nhật Bản nghiên cứu thêm, họ phát hiện ra rằng các bức tường bê tông của các lò phản ứng hạt nhân bị bỏ hoang đã giữ được cung cấp độ ẩm và duy trì nhiệt độ 40 - 55 độ C trong suốt quá trình vận hành của nhà máy điện hạt nhân (trong 16,5 năm), điều này làm tăng tỷ lệ silic và nhôm ion cũng như độ kiềm của tường. Cuối cùng dẫn đến sự hình thành Al-tobermorite, có cường độ tương đương với bê tông La Mã cổ đại.
Hình ảnh phân tích từ tia X cho thấy vật liệu kết dính gồm canxi, nhôm-silicate-hydrate (C-A-S-H) hình thành bởi tro núi lửa, vôi và hỗn hợp nước biển. Tinh thể platin của Al-tobermorite đã phát triển trong ma trận CASH này
Dường như thiên nhiên có thể dễ dàng làm được những điều mà cho tới nay loài người vẫn không thể làm được.
NỔI BẬT TRANG CHỦ
iPhone 14 Pro Max phát nổ khiến người dùng bị thương
Vụ việc đang tiếp tục được điều tra, làm rõ.
Tại sao nhân loại lại cần đến máy tính lượng tử, chúng được dùng để làm gì?